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ABSTRACT
Due to the global trend of aging societies with increasing de-
mand for low cost and high quality healthcare services, there
has been extensive research and development directed to-
ward wireless and remote healthcare technology that consid-
ers age-associated ailments. In this paper, we introduce Mo-
bility Assessment and Remote Healthcare System (MARHS)
that utilizes a force sensor in order to provide quantitative
assessment of the mobility level of patients with movement
disorder ailment, which is one common age-associated ail-
ment. The proposed system also enables the remote health-
care services that allow patients to receive diagnoses from
clinical experts without his/her presence. MARHS also con-
tains a data analysis unit in order to provide information
that summarizes the characteristics of symptoms of a group
of patients (e.g., patients with a certain type of ailment) us-
ing a combination of feature ranking, feature selection, and
classification algorithms. The results of the analyses on the
data from a clinical trial show that the examination results of
the proposed system can accurately recognize various groups
of patients, such as, patients with (i) chronic obstructive pul-
monary disease, (ii) hypertension, and (iii) cerebral vascular
accident with an average accuracy of 90.05%, 82.60%, and
93.54%, respectively.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-based
Systems]; H.4 [Information Systems Applications]:
Miscellaneous

General Terms
Measurement, Design, Performance, Experimentation, Hu-
man Factors
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Remote health, movement disorders, force sensors.
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1. INTRODUCTION
In the United States, the number of older adults is ex-

pected to reach 71 million, or roughly 20% of the popu-
lation, by 2030 [1, 23]. As a result of the worldwide trend
towards aging societies, the care for ailments associated with
the elderly, such as Alzheimer disease, diabetes, and Parkin-
son’s diseases (PD), is expected to be in high demand. We
are particularly interested in movement disorder ailments
such as PD, stroke, arthritis, and tremor, the most common
age-associated ailments [5]. Movement disorders affect the
function of motor neurons and, thus, restrict the movement
of the body, including upper limbs, gait and speech. Mod-
ern medical treatments for movement disorders are combina-
tions of medication, surgical operation, and rehabilitation.
In order to investigate the consequences of these medical
treatments, a method to measure the motor performance of
patients is often required.

Currently, the ailment progress or rehabilitation perfor-
mance are assessed by physicians based on observation of the
patient’s motor performance [10, 7], which makes the mea-
surement subjective and based on limited ordinal scales [13,
7]. This creates a need for quantitative assessment methods,
such that the analysis of a patient’s motor performance can
be made more accurate and objective [8, 13]. Moreover, the
current assessment systems for movement disorder ailments
require the presence of a physician and demand high-priced
services. Due to dramatic advances in recent telecommuni-
cations and information technology, remote health systems
are considered as solutions that provide quality healthcare
services at low costs. Telehealth or remote health systems
are defined as the application of telecommunications and in-
formation technology to the delivery of healthcare, health re-
lated services, and health related information beyond phys-
ical boarders [16, 4].

In this paper, we introduce Movement Assessment and Re-
mote Healthcare System (MARHS). This system provides
accurate and quantitative measurements of handgrip per-
formance of patients with movement disorder ailments. We
utilize the handgrip performance of patients to reflect the
level of mobility because handgrip strength is known as a
simple, accurate, and economical bedside measurement of
muscle function and the progression of the movement disor-
ders [13, 6, 15, 17, 19, 20, 11, 18, 14]. MARHS also provides
remote healthcare services by supporting rich data analy-
sis on patient’s handgrip performance such that physicians
and medical professionals can make diagnoses remotely. The
data analysis unit (DAU) of the proposed system shows that
the resulting signals provide valuable information reflecting
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the condition of the patient’s ailment. In order to address
this, the DAU recognizes and classifies signals of a partic-
ular group of interest (e.g., a patient with a particular ail-
ment) from other signals. By successfully classifying signals
of a group of interest, we show that the resulting signals of
MARHS contain important information defining the char-
acteristics of that group (i.e., a particular ailment). More-
over, the DAU provides information about features that con-
tribute the most in the classification process, which can be
used to define the ailment characteristics of the interested
group of patients. The numeric values of these features can
be used to provide quantitative measurements of the level of
mobility. The DAU utilizes a combination of feature rank-
ing, feature selection, and classification mechanisms in order
to address the aforementioned tasks.

This paper presents data analysis results of the proposed
system based on data collected from a clinical trial per-
formed at St. Vincent Hospital in Los Angeles, California,
USA.

This paper is organized as follows. Section 2 discusses the
related works. Section 3 introduces the hardware and soft-
ware architecture design of the proposed system. In Section
4, the DAU of the proposed system is discussed in detail.
Section 5 presents data analysis results using data collected
from a clinical trial. Finally, conclusion and future work is
discussed in Section 6 and 7, respectively.

2. RELATED WORKS
Many studies examined embedded systems for assessing

handgrip strength [10, 6, 15]. The system introduced in
[10] monitors the muscle activities using force sensors on
the palm and digits. In [6], a system that monitors the grip
strength and the digit muscle activities is introduced. More-
over, in [15], an embedded system that assesses the grip force
behavior during object manipulation is introduced. The pro-
posed work, unlike the aforementioned works, not only in-
troduces an embedded system that efficiently monitors the
grip performance, but also discusses how the examination re-
sults can be processed to correlate to the subjects’ ailment
conditions using data from a clinical trial.

In [11], authors investigate the handgrip strength and en-
durance of healthy subjects and patients, and conclude that
handgrip strength and mobility for patients are strongly cor-
related. They measure handgrip strength, endurance, and
work, and perform one-to-one comparisons between each
measurement and mobility. In other words, the authors as-
sume that the measurements are independent of each other
and, thus, correlation between the combination of those
measurements and mobility is not considered. On the other
hand, our system considers the correlation between vari-
ous combinations of multiple features and the patient’s dis-
ease condition. Additionally, the system proposed in [11]
can only process features (i.e., strength, endurance or work)
that are pre-defined, but the proposed system allows users
to add or remove features from a feature pool and intelli-
gently selects features that are useful to characterize a cer-
tain group of patients. Moreover, and most importantly, our
work presents a system that allows remote healthcare ser-
vices integrated with assessment of handgrip performance.

Figure 1: The graphical overview of the proposed
system. A patient is examined based on various tests
provided by the software and the handgrip device.
The results are transmitted to a computer using a
communication tool kit and stored in a database.
The examination results and the data analysis re-
sults can be remotely accessed by clinical experts.

3. MOVEMENT ASSESSMENT AND
REMOTE HEALTHCARE SYSTEM
(MARHS)

The objective of the system is to provide handgrip exam-
inations, retrieve signals from subjects, store the results in
the database, and finally analyze the signals in the database
in order to provide information such as features that char-
acterizes patients’ ailment symptoms. An overview of the
proposed system is illustrated in Figure 1. The proposed
system can be divided into two subsystems: the hardware
system and the software system. The hardware system con-
tains physical devices such as the handgrip device, the force
sensor, and the communication device. The major objec-
tive of the hardware system is to collect the time-varying
grip strength of the patient and to send the data stream
to the software system. The software system communicates
with the hardware system in order to store the examination
results in the database, and perform the data analysis on
the results. We discuss the detailed system architecture for
both the hardware and software system in Section 3.1 and
3.2, respectively.

3.1 Hardware Architecture

3.1.1 Handgrip Device
The handgrip device of MARHS is based on medical de-

vices used by clinical professionals (e.g., handgrip device in
[22]), as shown in Figure 2. Our device is composed of 6061
t-6 Aluminum and Delrin plastic, which are lightweight and
rigid. The black plastic component of the handgrip device
is composed of Delrin plastic. The two cylinders bridged by
the black plastic (Part-C in Figure 2 (a)) are movable along
the sideline (Part-B in Figure 2 (a)) such that patients can
grasp the device. The movable component of the handgrip
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Figure 2: (a) The physiologically designed handgrip
device of MARHS (left) and (b) the handgrip device
currently in use (right)

device is bound to the fork-like side (Part-A in Figure 2 (a))
of the handgrip by a rubber band. Patients can use rubber
bands of different tension force in order to customize the
squeeze force in the handgrip device. Additionally, the fork-
like side of the handgrip allows patients to further adjust the
tension force by placing the rubber band at different widths.
Note that patients can adjust the initial position of the mov-
able component of the handgrip device by using adjustable
pin holes on the sideline (i.e., Part-B in Figure 2 (a)) of the
handgrip. Thus, grasping performance of various patients
with different size of extremities can be optimized. Finally,
a force sensor is attached to Part-D in Figure 2 (a), and it
measures the force generated from the grasping action.

3.1.2 Force Sensors
In MARHS, a force sensor is attached to the handgrip

device in order to measure the grip strength. We employ
a commercial FSRTM sensor (Interlink Electronics, Camar-
illo, CA, US) [2] in our system. The FSR sensor is a thin-
film force sensor that contains a thermoplastic sheet and
a conductive polyetherimide film facing to each other [21].
When there is no force applied to the FSR sensor, the two
sheets are electrically separated, which generates infinite
impedance. In the case when there is a force applied to
the sensor, the two sheets make electrical contact, and finite
impedance is generated. As the amount of force applied
increases, the resistance generated by the FSR sensor de-
creases [21]. We employ the FSR sensors in the proposed
system because (i) the FSR sensor responses accurately and
precisely to the general range of handgrip force, and (ii) the
FSR shows good performance in terms of robustness [21].

3.1.3 Communication Port
The communication device delivers the pressure values

captured by the force sensor to the software (Section 3.2). In
our proposed system, an MSP430 (Texas Instruments, Dal-
las, Texas, USA) [3] is employed as the communication de-
vice. The MSP430 is a communication device that allows the
force sensor on the handgrip device to communicate with the
software either in wired or wireless manner. The MSP430
uses USB as its communication port at the receiver-side.

The modulation rate is 9600 symbols per second with each
symbol being 8-bits long. The MSP430 contains a Micro
Controller Unit that allows us to implement software using
a simple handshake mechanism in order to initiate and ter-
minate the communication. This dramatically decreases the
required power when the device is communicating wirelessly.

3.2 Software Architecture
The examinations provided by the software are designed

such that a patient’s grip strength as well as the precise-
ness of a patient’s ability to control the grip strength can
be effectively measured. Due to the various physical condi-
tions of different patients, patients have different handgrip
strength. Thus, the examinations must be normalized based
on physical conditions of different patients. In order to solve
the problem, the system measures the maximum voluntary
contraction (MVC) and normalizes the examination based
on the value of MVC for each patient. MVC defines that a
patient voluntarily grasps the handgrip device with his/her
maximum effort.

Patients may proceed to the actual examination followed
by the calibration process. Figure 3 (a) illustrates an exam-
ple of an examination using a sinusoidal waveform. When
the examination begins, the target waveform (red line) is
horizontally shifted to the left at a constant speed, and thus,
users observe a flow of the waveform within the screen. The
blue circle in the middle of the screen corresponds to the level
of pressure acquired from the force sensor. The blue circle
is always located in the middle of the x-axis and its position
in the y-axis changes according to the pressure provided by
the patient. The labels on y-axis represent the percentage of
the acquired pressure compared to the MVCmeasured in the
calibration process. The objective of the examination is to
control the grip strength, so that the blue circle can be over-
lapped to the waveform as much as possible. In summary,
the examination considers both the maximum strength and
the preciseness of patients’ grip control.

The software provides different waveforms including the
sinusoidal waveform such as exponential and step-function
waveform. Moreover, the software provides a number of test
parameters, which may change the attributes of the test.
For example, patients may change the speed of the wave-
form horizontally shifting or the size of the blue circle, which
allows patients to perform the test at different levels of dif-
ficulties. Additionally, users may vary the time duration of
the test.

The result waveforms created by the patients and the an-
notative information are stored in the database system in
order to deliver maximum range of information about the
examination. The information stored in the database sys-
tem can be remotely retrieved by physicians or clinicians for
quality remote healthcare services. Figure 3 (b) illustrates
an example of this remote healthcare functionality. This in-
terface also allows physicians to provide various inputs to
the DAU (Section 4), and to retrieve the results from the
DAU including information such as unique symptoms of a
particular ailment.

The software is programmed in C# .NET and the data-
base system is designed in SQL.

4. DATA ANALYSIS UNIT
In this section, we introduce the DAU, which extracts im-

portant information from the patient-generated signals and
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Figure 3: Screenshots of the software of MARHS. Screenshot in (a) illustrates an example of an examination
on handgrip performance, and screenshot in (b) illustrates an example of the remote healthcare functionality
of MARHS, which allows physicians to retrieve clinical and examination information stored in the database.

summarizes the characteristics of symptoms of patients. In
order to address this objective, we employ a feature ranking
mechanism, a feature selection mechanism, and a classifica-
tion algorithm. We classify signals from a group of patients
of particular interest. By successfully classifying signals of
interest from other signals, we show that the signals gener-
ated by MARHS contain valuable information, which may
reflect the characteristics of the selected group of patients.
Thus, it allows us to further process the signals to quantify
multiple aspects of patients’ mobility levels. Additionally,
the DAU provides information about subset features that
contribute the most in the classification process using fea-
ture ranking and feature selection mechanism. These fea-
tures may characterize unique symptoms of patients of our
particular interest.

4.1 Software Interface
The prototype interface of the DAU is illustrated in Fig-

ure 4. The DAU begins with forming a group of signals of
interest. Throughout this paper, we generically use the term
group of interest (GOI) to represent the signals in which we
are particularly interested to analyze. The software inter-
face asks users to define the GOI by checking the checkbox
as shown in Figure 4, which is used as the ground truth label
in order to evaluate the classification performance. The GOI
can be flexibly defined in order to characterize different sets
of the examination results. For example, we can define the
GOI as the signals of patients with Cerebral Vascular Ac-
cident (CVA) and compare these signals against the signals
of patients without CVA. If we can successfully classify sig-
nals of patients with CVA from other patients, we can claim
that the resulting signals of MARHS contain information
(i.e., features), which may define characteristics of patients
with CVA. Note that we also use the term positive signals
and negative signals to define the signals in the GOI and
the signals in the complement of the GOI, respectively. The

DAU interface then allows users to add, delete and modify
feature functions to be considered in the feature selection
and classification process. Finally, the DAU interface dis-
plays the data analysis results when users press a command
button. The flow of signals in the DAU is illustrated in Fig-
ure 5. Each component in Figure 5 is further discussed in
the following subsections.

4.2 Feature Extraction
The DAU starts the data analysis process by extracting

features from the examination results. Suppose that we rep-
resent a vector of extracted features from a single examina-
tion result as

s =
[
s1 s2 · · · sT

]
, (1)

where T is the number of features. We further suppose that
wg[n] represents the target waveform (e.g., perfect sinusoidal
waveform) and wr[n] represents the waveform generated by
the patient (e.g., the trajectory of the blue circle in Figure
3 (a) over a period of time). Then each feature si can be
represented as a function of wg[n] and/or wr[n],

si = fi (wg[n], wr[n]) .

We define fi (·) as a feature extraction function, which is
either in time-domain or in frequency-domain. An exam-
ple of feature extraction functions in time-domain can be
the average difference between the magnitude of wg[n] and
wr[n]. This example of the feature extraction function can
be mathematically expressed as

f =
1

N

N∑
n=1

|wg [n]−wr[n]|, (2)

where N is the length of wg[n] and wr[n]. An example of
feature extraction functions in frequency-domain can be the
magnitude of harmonics at the frequency range between 3 to
6 Hz (patients with Parkinson’s disease are known to have
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Figure 4: A screenshot of the software interface of
the DAU. This prototype interface allows users to
define a group of signals of interest (i.e., a particular
ailment) and feature functions to be considered in
the analysis. The system displays the results upon
users’ requests.

tremors of frequency around 3 to 6 Hz). This function can
be mathematically expressed as

f =
∑

k∈[3−6Hz]

|Wr[k]|, (3)

where Wr[k] is the Discrete Fourier Transform (DFT) of
wr[n]. Note that the formal example of the feature selection
function is a linear function and the latter example is a non-
linear function.

Once a set of feature extraction functions is defined, we
extract features from all signals. Suppose that M represents
the total number of signals including both positive and nega-
tive signals. Then, we can extracts total M number of arrays
of features, which can be represented as a two dimensional
array,

S =

⎡
⎢⎢⎢⎣

s1

s2

...
sM

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

s11 s12 · · · s1T
s21 s22 · · · s2T
...

. . .
...

sM1 sM2 · · · sMT

⎤
⎥⎥⎥⎦ (4)

=
[
s1 s2 · · · sT

]
, (5)

where sj with j ∈ [1,M ] is a horizontal array of features as
in (1) and si with i ∈ [1, T ] is a vertical array composed of
values of a feature fi(·) computed from the entire signals.

4.3 Feature Selection and Classification
The DAU runs a feature selection technique based on an

instance of the wrapper approach. The wrapper approach
determines a set of features that have small contribution in
classifying data based on the results of the feature ranking
technique [9, 12]. Feature ranking technique is a metric to
evaluate the performance of a feature in the classification
process. The reason that we employ feature ranking and
feature selection techniques are as follows. First, given a
pre-defined set of features as in (1), not all of these features

Figure 5: The graphical overview and data flow of
the DAU. The DAU extracts identical features from
both positive and negative class data. Then, the
DAU performs wrapper approach to select impor-
tant features based on the results of the feature
ranking and classification (LDA).

play important role in classifying a certain GOI. This may
lead to a problem during the classification process that a
collection of many useless features can be accumulated to
overwhelm some useful features (i.e., overfitting problem).
Second, it is more efficient computationally since it filters
out features that are less useful. Lastly, information about
the rank of features according to the level of contributions
in the classification process is valuable to us because fea-
tures with higher rank can be defined as unique symptoms
found only in that GOI. In MARHS, we employ the esti-
mated Pearson correlation coefficients to rank the features
according to the level of correlation to the class labels (i.e.,
positive or negative signals). The Pearson correlation coef-
ficient for a feature fi, can be estimated using

R(i) =

∑M
j=1

(
sji − E(si)

) (
yj − E(y)

)
√∑M

j=1

(
sji − E(si)

)2 ∑M
j=1 (y

j − E(y))2
, (6)

where yj with j ∈ [1,M ] represents the class of the signal j
(i.e., +1 for positive and −1 for negative class signal) and
E(·) represents a function computing the mean value of the
input vector. Then, we use R(i)2 as a feature ranking cri-
terion that estimates goodness of linear fit of an individual
feature to the class vector y [9].

Given the rank of all features, the wrapper approach needs
to decide (i) how to construct the subset feature search space
and (ii) which classification algorithm to be used to assess
the performance of different subset features. The simplest
search space is to consider all possible feature combinations
and perform the chosen classification algorithm to evaluate
the performance for each feature combination. However, for
T features, the evaluation must be performed for 2T − 1
combinations, which is not computationally feasible. Thus,
we utilize the famous forward selection strategy to construct
the search space, which starts with the highest ranked fea-
ture and gradually adds a feature that is the next highest
ranked. Then, the size of the search space is reduced to
T − 1. In order to evaluate each feature subset, we uti-
lize leave-one-out cross validation with Linear Discriminant
Analysis (LDA) as the classification algorithm. Each feature
subset is evaluated using the average classification accuracy
based on leave-one-out cross validation. Algorithm 1 shows
the pseudo-code for the feature selection algorithm used in
the DAU.
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Algorithm 1Wrapper approach feature selection algorithm
using forward selection

F = [f1, f2, · · · , fT ] {entire feature sets sorted in a de-
creasing order of feature ranking from (6)}
S {M by T data matrix as in (4)}
y {M by 1 matrix of classes as in (6)}
V = [φ] {array that will contain average classification
accuracy of each feature subset}
for i = 1 to T do

F = F [1 : i] {selecting the most significant i features}
A = [φ]
for j = 1 to M do

S
′
= S − sj {leave-one-out training set}

y
′
= y − yj {class label for training set}

X
′
= S

′
[:, F ] {considering subset feature}

θ = LDA
(
X

′
, y

′) {training}
y∗ = θ ∗ s {predicted class of the testing set sj}
if y∗ == yj then

A [j] = 1 {correctly classified}
else

A [j] = 0 {incorrectly classified}
end if

end for
V [i] = E(A) {computing the average classification ac-
curacy}

end for
n = argmaxi V [i]
return [f1, f2, · · · , fn] {subset of features producing the
maximum accuracy}

4.4 Other Feature Ranking and Classification
Methods

In addition to Pearson correlation coefficient, we tried
a number of different feature ranking methods such as in-
formation theoretic approach or single-feature classification
approach. We also tried different classification algorithms
such as Naive Bayes, decision tree, support vector machine
(SVM), and adaptive boost (AdaBoost) instead of LDA.
However, any combination of the aforementioned methods
did not show any superior performance compared to the pro-
posed combination of Pearson correlation method and LDA.

5. CLINICAL TRIAL AND DATA
ANALYSIS

This section presents the data analysis results of our sys-
tem including the DAU based on data obtained from a clini-
cal trial of the proposed MAHRS, performed at St. Vincent
Medical Center (Los Angeles, CA). A total of 12 patient
subjects participated in this clinical trial. The clinical in-
formation about patient subjects is provided in Table 1. All
patients were examined under the same environment such
that the examination results are not affected by factors other
than the mobility performance of subjects. For example,
each subject performed the examination while he/she was
seating upright, had elbow flexed 90 degrees with arm close
to the body, and had wrist and forearm resting on a table.
Note that all subjects had performed the test using the sinu-
soidal waveform as the target waveform with test duration

of 20 seconds in order to make the results comparable to
each other.

This data analysis considers three different GOIs: (i) a
group of patients with Chronic Inflammatory Demyelinating
Polyneuropathy (CIDP), (ii) a group of patients with hyper-
tension, and (iii) a group of patients with Cerebral Vascular
Accident (CVA). These three GOIs are chosen among var-
ious ailments described in Table 1 such that each GOI can
be analyzed with a sufficient number of signals. For exam-
ple, a total of 24 signals are available for patients diagnosed
with CIDP (Patient Subjects 6 and 8), a total of 25 signals
for hypertension (Patient Subjects 1, 3, 4, and 5), and a
total of 17 signals for CVA (Patient Subjects 3, 7, 10, and
12). Ailments such as Parkinson’s disease or diabetes are
not considered because the number of available signals is
too small to be used to train and test the system. Figure 6
illustrates sample examination results of the three GOIs that
we consider in this analysis. The target waveform (i.e., per-
fect sinusoidal waveform) is depicted by the red dotted line,
and the patient generated waveform is depicted by the blue
solid line. Figure 6 (a) illustrates sample signals of patients
with CIDP, Figure 6 (b) illustrates samples of patients with
hypertension, and Figure 6 (c) illustrates samples of patients
with CVA.

5.1 Feature Pool
This section presents features used in the data analysis in

order to define the characteristics of different GOIs. A total
of 45 candidate feature functions are defined: 36 functions
extracts features in the time-domain and 9 functions in the
frequency domain. These features are further analyzed as
explained in Section 4, and a subset of these 45 features
is selected to define the characteristics of the tested GOI.
The feature functions are denoted as fi with 1 ≤ i ≤ 45,
where the first 36 feature functions are in the time-domain
and the following 9 feature functions are in the frequency-
domain. The first time-domain feature extraction function,
denoted as f1, is based on the average difference in magni-
tude between the target waveform and the waveform gener-
ated by the subject, similar to the equation defined in (2).
This function provides the overall level of performance in
term of accuracy. f2 computes the maximum instantaneous
change in magnitude of the subject-generated waveform in
order to investigate how well a subject manipulates the grip
strength. f3 computes the minimum time required for the
subject-generated waveform to cross the target waveform
from the time that the examination begins. This function
provides possible information about reaction time for the
subject to restore to the target waveform from deviation.
The fourth time-domain function, f4, computes the total
number of intersections of two waveforms in order to inves-
tigate a subject’s ability in order to control the grip strength
to stay near the target waveform. f5 investigates the num-
ber of changes in sign of the slope of the patient-generated
waveform in order to correlate the examination results to
possible effect of tremor. f6 and f7 compute the number
of times that the subject-generated waveform crosses hori-
zontal lines at magnitude y = 50% and y = 25%, respec-
tively. The time-domain functions from f8 to f22 are con-
structed as the following. The 20 second-long waveforms
generated by subjects are quantized into 15 segments of uni-
form length in time axis (i.e., each segment contains the
data of 20/15 seconds). Then, f8 to f22 contain the mean
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Table 1: Limited clinical information about patient subjects tested on the proposed system. The last column
(i.e., Number of tests) provides the number of tests performed for each subject. Note that associated
diseases of Patient Subject 2, 10, and 11 are not provided due to the participants’ unwillingness to reveal
their information (N/A stands for Not-Available). However, this unrevealed information does not complicate
any of the data analysis results provided Section 5.2, 5.3, and 5.4.

Age Gender Primary diagnosis Secondary diagnosis Number of tests

Patient Subject 1 85 Male Arthritis Left Hip Hypertension 8
Patient Subject 2 49 Female N/A - 3
Patient Subject 3 87 Female Cerebral Vascular Hypertension 6

Accident
Patient Subject 4 73 Male Chronic Obstructive Hypertension 4

Pulmonary Disease
Patient Subject 5 72 Male Intra-Cranial Hemorrhage Hypertension / Diabetes 7
Patient Subject 6 73 Male Fracture L Tibia Chronic Inflammatory 6

Demylenating Polyneuropathy
Patient Subject 7 65 Female Progressive Debility Multiple CVA 3
Patient Subject 8 73 Male Chronic Inflammatory Hypotension/Pancytopenia 18

Demylenating Polyneuropathy
Patient Subject 9 74 Male Parkinson’s Disease - 2
Patient Subject 10 60 Male N/A CVA 4
Patient Subject 11 74 Female N/A - 2
Patient Subject 12 61 Female NTBI CVA 4
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Figure 6: Sample signals of subjects with various conditions. The four signals in column (a) belong to patients
with CIDP (the top two signals from Patient Subject 6 and the bottom two from Patient Subject 8 in Table
1). The signals in column (b) belong to patients with hypertension (one from each Patient Subjects 1, 3, 4,
and 5). The signals in column (c) are sample signals from patients with CVA (one from each Patient Subjects
3, 7, 10, and 12).

339



Feature Index

Pe
ar

so
n 

co
eff

ici
en

t

0.0
0.1

0.2
0.3

0.4

10
13
20
4
26
16
29
33
34
23
2
17
35
8
28
14
7
38
21
24
30
44
15
9
41
22
37
3
18
27
42
11
25
31
32
40
19
45
6
11
5
43
39
36
1

Figure 7: The ranking (Pearson coefficients) of fea-
tures for GOI composed of patients with CIDP. The
results show that f1 (the right-most index) provides
the highest correlation to CIDP and f10 (the left-
most index) provides the lowest correlation.
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Figure 8: The average classification accuracy of GOI
composed of patients with CIDP over the search
space using forward selection strategy. The results
show that the maximum average accuracy of 90.05%
is achieved when the highest 33 features are em-
ployed.

values of the magnitude of these segment. These quatized
segments are used to evaluate the changes in grip strength
over time. Furthermore, the time-domain functions from
f23 to f36 compute the difference in mean magnitude of the
two neighboring segments. These features are used to eval-
uate how fast the grip strength of a patient changes over
time. The frequency-domain functions used in this analysis
are computed as the following. The first frequency-domain
function, f37, computes the average difference in magnitude
between the DFT of the target waveform and the DFT of
the subject-generated waveform over all possible frequency
range. The frequency-domain functions from f38 to f45 di-
vide frequency range from 0 Hz to 16 Hz into 8 segments
of uniform length (i.e., 2 Hz), and compute the spectrum
energy for each segment in order to investigate the tremor
effect at various frequency ranges.

5.2 Patients with CIDP
This section presents the data analysis results when the

GOI is defined as the signals of patients with CIDP. In other
words, we define the positive-class data as the signals of Pa-
tient Subjects 6 and 8 in Table 1, and the negative-class data
as the signals of the rest of patients. Some sample signals in
the positive class are provided in Figure 6 (a). As discussed

Table 2: Summary of the first 5 features of the se-
lected 33 features for the GOI composed of patients
with CIDP

Rank Label Pearson coefficient
1 f1 0.46404
2 f36 0.46272
3 f39 0.43509
4 f43 0.42060
5 f5 0.37586

in Section 4, the extracted features from both positive and
negative classes are evaluated using equation (6). Note that
M in (6) represents the total number of signals considered in
this analysis (i.e., M = 67) and T represents the total num-
ber of features (i.e., T = 45). Moreover, yj = 1 if the jth

signal belongs to the GOI and yj = 0 otherwise. The eval-
uated feature ranking for this analysis is provided in Figure
7, where the feature functions are sorted in an increasing
order of their ranking. According to the graph, f1 has the
highest correlation to the class label y and f10 has the lowest
correlation. As shown in Algorithm 1, we employ forward
selection strategy to construct the search space. We initially
start with a single feature with the highest rank (i.e., f1),
and gradually add the next highest ranked feature until we
consider the entire set of features (i.e., f1, f2, · · · , f45). Fig-
ure 8 shows the average classification accuracy (V [i] in Al-
gorithm 1) over the search space (i.e., number of features in
forward selection strategy). The results show that the max-
imum accuracy of 90.05% is achieved when the highest 33
features are employed. This implies that the classifier could
successfully recognize signals of patients with CIDP at the
maximum rate of 90.05%. Moreover, the highest 33 features
are the distinct and unique features of patients with CIDP,
which makes their signals most distinguishable from other
patients. In Table 2, we provide information about the first
5 features out of the selected 33 features. Detail descriptions
about these features are provided in Section 5.1.

5.3 Patients with Hypertension
A similar analysis has been conducted on the GOI com-

posed of patients with hypertension (i.e., Patient Subjects
1, 3, 4, and 5). Some sample signals of hypertension are
provided in Figure 6 (b). As discussed in Section 4, the ex-
tracted features are evaluated using equation (6). Note that
the class label vector y is different from that of the previous
section, since yj = 1 when jth signal belongs to patients with
hypertension, and yj = 0 otherwise. The evaluated feature
ranking of this GOI is provided in Figure 9. Figure 9 shows
that f6 provides the highest correlation to the class label
vector y, and f8 provides the lowest correlation. Moreover,
we compute the average accuracy of classifying the patients
with hypertension based on leave-one-out cross validation
as explained in Algorithm 1. Figure 10 shows the average
accuracy over possible search space using forward selection
strategy. The maximum average accuracy is 82.60%, and
this accuracy is achieved when the highest 2 features are
employed. This implies that the signals of patients with
hypertension could be successfully distinguished from other
patients at the maximum average rate of 82.60%. Moreover,
the selected features, f6 and f7, are the two unique features
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Figure 9: The ranking (Pearson coefficients) of fea-
tures for GOI composed of patients with hyperten-
sion. The results show that f6 (the right-most index)
provides the highest correlation to hypertension and
f8 (the left-most index) provides the lowest correla-
tion.
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Figure 10: The average classification accuracy of
GOI composed of patients with hypertension over
different number of features. The results show that
the maximum average accuracy of 82.60% is achieved
when the highest 2 features are employed

that characterize patients with hypertension, which makes
their signals the most distinguishable.

5.4 Patients with CVA
This section shows the data analysis results of MARHS

when the GOI is defined as signals of patients with CVA.
In other words, signals of Patient Subjects 3, 7, 10, and 12
are labeled as positive signals and the signals of the rest of
patients are labeled as negative. Some sample signals of pa-
tients with CVA are shown in Figure 6 (c). The features
defined in Section 5.1 are evaluated based on equation (6),
and the results are displayed in Figure 11. This figure shows
that f36 has the highest correlation with CVA, and f9 has
the least correlation. The average classification accuracy for
CVA is computed in the search space created by forward se-
lection. The results are displayed in Figure 12. It shows that
the maximum average accuracy is 93.54%, and the highest
2 features are used. This implies that the signals of patients
with CVA could be successfully recognized from other pa-
tients at the maximum average rate of 93.54%. Moreover,
the highest two features, f36 and f39, are the distinct and
unique features that characterizes patients with CVA, which
makes their signals most distinguishable.
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Figure 11: The ranking (Pearson coefficients) of fea-
tures for GOI composed of patients with CVA. The
results show that f36 (the right-most index) provides
the highest correlation to CVA and f8 (the left-most
index) provides the lowest correlation.

6. CONCLUSION
This paper presents the Mobility Assessment and Remote

Healthcare System (MARHS), which provides quantitative
measurements on handgrip performance for patients with
movement disorders. MARHS also provides remote health-
care services by allowing the patients to receive diagnoses
from clinical experts remotely. We discussed the hardware
and software architecture of the system. We also intro-
duced the DAU, which shows that the examination results
of MARHS contain information reflecting the characteris-
tics of various ailments. In other words, examination results
produced by MARHS can be used to diagnose the disease
progress or condition of a patient and, thus, quantitative
measurements computed based on these examination results
can provide valuable information. We have performed three
data analysis using signals that we acquired from a clini-
cal trial at St. Vincent Medical Center (Los Angeles, CA).
The first analysis was to classify signals of patients with
CIDP, and we achieved the maximum average classification
accuracy of 90.05%. We also performed analyses to clas-
sify signals of patients with hypertension and CVA, and
we achieved the maximum average accuracy of 82.60% and
93.54%, respectively. These results, which show high classi-
fication accuracy, help us to conclude that the examination
results of MARHS may be utilized as a metric to quantify
the disease progress and condition of a patient.

7. FUTURE WORK
There exist many potential research directions that we

can be pursued in the future. We can perform experiments
showing the correlation between the examination results and
the effectiveness of a certain surgical or therapeutic event.
For example, observing any changes in measurements be-
fore a neurological surgery and after a surgery may provide
valuable information about the consequence of the surgical
operations on movement performance. Additionally, we can
utilize a handgrip device that can measure the grip strength
in a standard unit, such as Newton or kilogram. This design
may provide a wider range of feature extraction functions,
which allows us to perform various experiments related to
disease progress over time. Our research group has success-
fully implemented a new handgrip design using a spring and
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Figure 12: The average classification accuracy of
GOI composed of patients with CVA over different
number of features. The results show that the max-
imum average accuracy rate of 93.54% is achieved
when the highest 2 features are employed.

a position sensor, and it is currently undergoing another set
of clinical trials.
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